Dynamic traversal of large gaps by insects and legged robots reveals a template.

نویسندگان

  • Sean W Gart
  • Changxin Yan
  • Ratan Othayoth
  • Zhiyi Ren
  • Chen Li
چکیده

It is well known that animals can use neural and sensory feedback via vision, tactile sensing, and echolocation to negotiate obstacles. Similarly, most robots use deliberate or reactive planning to avoid obstacles, which relies on prior knowledge or high-fidelity sensing of the environment. However, during dynamic locomotion in complex, novel, 3D terrains, such as a forest floor and building rubble, sensing and planning suffer bandwidth limitation and large noise and are sometimes even impossible. Here, we study rapid locomotion over a large gap-a simple, ubiquitous obstacle-to begin to discover the general principles of the dynamic traversal of large 3D obstacles. We challenged the discoid cockroach and an open-loop six-legged robot to traverse a large gap of varying length. Both the animal and the robot could dynamically traverse a gap as large as one body length by bridging the gap with its head, but traversal probability decreased with gap length. Based on these observations, we developed a template that accurately captured body dynamics and quantitatively predicted traversal performance. Our template revealed that a high approach speed, initial body pitch, and initial body pitch angular velocity facilitated dynamic traversal, and successfully predicted a new strategy for using body pitch control that increased the robot's maximal traversal gap length by 50%. Our study established the first template of dynamic locomotion beyond planar surfaces, and is an important step in expanding terradynamics into complex 3D terrains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Body-terrain interaction affects large bump traversal of insects and legged robots.

Small animals and robots must often rapidly traverse large bump-like obstacles when moving through complex 3D terrains, during which, in addition to leg-ground contact, their body inevitably comes into physical contact with the obstacles. However, we know little about the performance limits of large bump traversal and how body-terrain interaction affects traversal. To address these, we challeng...

متن کامل

Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking

In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...

متن کامل

Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.

Many animals, modern aircraft, and underwater vehicles use fusiform, streamlined body shapes that reduce fluid dynamic drag to achieve fast and effective locomotion in air and water. Similarly, numerous small terrestrial animals move through cluttered terrain where three-dimensional, multi-component obstacles like grass, shrubs, vines, and leaf litter also resist motion, but it is unknown wheth...

متن کامل

Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.

Arthropods are the most successful members of the animal kingdom largely because of their ability to move efficiently through a range of environments. Their agility has not been lost on engineers seeking to design agile legged robots. However, one cannot simply copy mechanical and neural control systems from insects into robotic designs. Rather one has to select the properties that are critical...

متن کامل

Stiffness control of a legged robot equipped with a serial manipulator in stance phase

The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinspiration & biomimetics

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2018